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Abstract: The mass spectra of a series of bis(/3-ketoenolate) complexes of copper(II), as well as bis(2,2-dimethyl-
3,5-hexanedionato)zinc(II) and bis(2,2-dimethyl-3,5-hexanedionato)magnesium(II), show the same preferential frag­
mentation pattern, the most striking characteristic being the stepwise removal of the alkyl substituents. The popu­
lations of the species arising from this fragmentation process vary and can be rationalized on the basis of the elec­
tronic effects of the alkyl substituents; the ionization potentials of the copper chelates also reflect this trend. In 
all of these spectra a reaction of the chelate within the mass spectrometer, apparently a substitution of Cu by Fe, is 
observed under a variety of conditions. 

Few reports dealing with the mass spectra of metal 
chelates have appeared in the literature. 4~8 This 

work attempts to establish a relationship between the 
electronic structure and the mass spectra of the copper-
(II) chelates of some 1,3-diones, through consideration 
of ion intensities and electron-impact ionization 
potentials9 of systematically substituted compounds. 
The l,3-dionatocopper(II) chelates have a wide range of 
thermodynamic stabilities and are suited to a study of 
this sort. 

One of the striking features of the spectra (Table I) 
of the copper(II) chelates is the large number of frag­
ments containing copper. These are easily identified 
because the naturally occurring isotopes of copper, 63Cu 
and 65Cu, are present in nearly a 2:1 ratio. The 
chelates studied appear to have a common preferential 
fragmentation pattern and to have three copper-
containing species in common: m/e 231-233 (c), mje 
147-149 (g), and m/e 105-107 (h). The sum of the 
intensities of the m/e 231 and m/e 233 ions is reported as 
100% in all cases so that the spectra may be easily 
compared. 

Examination of the data for the copper species shows 
a clear pattern for the fragmentation process involving 
the stepwise elimination of the alkyl groups around the 
periphery of the chelate ring structure. As the stability 
of the radical formed from the alkyl group increases 
[CH3 < CH 2 CH 3 < CH(CHa)2 < C(CH,)*], the pop­
ulation of copper species containing that alkyl group 
decreases. In other words, the cleavage of Z-butyl is a 
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favored process and copper species containing this 
group are least populous (Scheme I).10 Also the loss 
of two methyl groups to give i is not observed, except 
in the trivial case where R is CH3 . The over-all 
fragmentation process for the copper-containing species 
is shown in Scheme I. 

Scheme I. Fragmentation of Copper-Containing Species 
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(10) Alkyl losses crudely parallel intensities expected from considera­
tion of the radical ionization potentials; attempts at a strict correlation, 
as attempted recently for purely organic systems,11 are impossible be­
cause the primary processes of decomposition do not give identical ions. 

(11) M. M. Bursey and E. S. Wolfe, Org. Mass Spectrom., 1, 543 
(1968). 
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Scheme I {Continued) 
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Another feature of the spectra is the presence of a 
copper species g that contains only one ligand minus 
the alkyl group. It may arise through Cu-O bond 
scission in c, and may be followed by cleavage to the 
interesting copper-ketene species h. 

In both c and h the copper has apparently been 
reduced and is present as copper(I). If, on the other 
hand, the positive charge is completely localized on the 
copper atom, the formal oxidation state of copper would 
still be + 2 . The copper-ketene species h may give 
rise to copper(I) ion, which is observed in all cases; no 
copper(II) is observed. 

The very low abundance of copper(I) ion can be 
rationalized on the basis of the strength of the Cu-O 
bonds as a result of the hyperconjugative effect of the 
alkyl group, which increases the electron density at the 
oxygens. As a verification of this explanation for the 
low intensity of copper(I) ion, the mass spectrum of 
bis(hexafluoroacetylacetonato)copper(II) (6) was deter­
mined. The strong electron-withdrawing effect of the 
trifluoromethyl groups is known to decrease the 
strengths of the Cu-O bonds, and this fact is reflected in 
the thermodynamic stability of the chelate.12 As 
expected, copper(I) ion is a major fragment in the 
spectrum of bis(hexafluoroacetylacetonato)copper(II). 

The mechanism of these fragmentation reactions is 
more difficult to formulate than those of simpler organic 
molecules because of the uncertain nature of the ligand-
copper bonds. A formalized bond model is not 
meaningful inasmuch as formal bonds fail to point out 
the 7r-bonding possibilities that result from the quasi-
aromatic nature of the chelate ring.13 

The origin of the electron removed is of considerable 
interest, though the fragmentation patterns do not 
clarify this point. Whatever the orbital from which the 
electron is lost, energy is eventually localized sufficiently 
in the appropriate bonds so that one of two fragmen­
tation paths is followed: (1) the parent ion can lose the 
alkyl groups one at a time, or (2) it can undergo ligand 
cleavage.14 Pathway 1 would lead to the formation of 
other copper species in general, whereas pathway 2 could 
lead to fragments associated with the ligand in those 
cases where the ligand itself carries the charge after the 
fragmentation. Pathway 2 is apparently favored only 
if the organic species carries with it an extra hydrogen 
from some source, for the fragments characteristic of 
the dione itself are observed rather than those expected 
for the ligand as it exists in the chelate. The major 
fragments arising from ligand cleavage are listed in 
Table I and are typical of those reported for 1,3-
diketones.16 

A further question concerns the mechanism of the 
stepwise cleavage of the alkyl groups from the parent 
ion. This would seem to call for the transfer of an elec­
tron from one-half of the chelate structure to the other 
through the central copper atom, thereby allowing the 
alkyl groups to leave as radicals. Although valence-
bond pictures can be used in mechanisms to depict 
plausible electron transfers in the ion, these are too 
speculative at the present to warrant presentation here. 

The ionization potentials of these compounds reflect 
a similar effect of the substituent on the orbital from 
which the electron is removed. Table II lists values 
showing a substituent effect on ionization potential 
apparently as large as that found in substituted 
benzenes, where the ionization potential of trifluoro-
methylbenzene is 9.68 eV,16 that of toluene is 8.82 eV,16 

and that of r-butylbenzene is 8.68 eV.17 

(12) L. G. Van Uitert, W. C. Fernelius, and B. E. Douglas, J. Am. 
Chem. Soc, 75, 457 (1953). 
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83,531 (1961). 
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(15) J. H. Bowie, D. H. Williams, S.-O. Lawesson, and G. Schroll, 
J. Org. Chem., 31, 1384 (1966). 

(16) L. D. Isaacs, W. C. Price, and R. G. Ridley, "The Threshold of 
Space," M. Zelikoff, Ed., Pergamon Press, Ltd., London, 1957, p 143. 

(17) W. C. Price, R. Bralsford, P. V. Harris, and R. G. Ridley, 
Speclrochim. Acta, 14, 45 (1959). 
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Table I. Mass Spectra of Chelates 
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" A representative intensity for the molecular ion of the 1,3-dione. b A representative intensity for the iron(II) chelate molecular ion. 

The electronic effect of the substituent unsym-
metrically disposed on the chelate ring is thus very 
large. If the charge is localized in one ring, the 
sensitivity to substituents parallels the sensitivity in 
another six-membered ring, benzene; if, on the other 
hand, the ionization potential reflects substitution in 
both rings, then the sensitivity to a single substitution 
would be only half as great as the effect of a single 
substitution on the benzene ring. To make a choice 
between these hypotheses, the ionization potentials of 
two compounds each containing two methyl and two 
trifluoromethyl groups on the quasi-aromatic rings were 
measured. One of these compounds is bis( 1,1,1-
trifluoro-2,4-pentanedionato)copper(II) (5) (see Table 
I). The other is 2,4-pentanedionato-l',l ' ,l ' ,5',5',5'-
hexafluoro-2,4-pentanedionatocopper(II) prepared in 
the inlet system of the mass spectrometer by ligand 
exchange between the two symmetrical chelate com­
pounds 1 and 6. If the ionization potential of the 
compound is affected by the entire system, both of 
these compounds should have very nearly the same 
ionization potential. But if one ring dominates the 

orbital from which the electron is removed (e.g., if the 
electron is removed from a single chelate ring), the 
second compound should have an appreciably lower 
ionization potential than the first, because the electron 
should preferentially be removed from the chelate ring 
with greater electron density. The mixed-ligand com­
pound should then have an ionization potential 
resembling that of bis(2,4-pentanedionato)copper(II) 
(1), perhaps slightly raised by an inductive effect of the 
ring bearing the trifluoromethyl groups. 

The comparison of the ionization potentials for these 
two compounds supports the first picture, for the 
potentials are within the statistical error in repro­
ducibility of our data. The energy of the orbital from 
which the electron is removed is controlled about 
equally by substituents in both rings. The scale of 
individual substituent effects is therefore actually about 
half that of the scale for ionization potential variation in 
substituted benzenes unless a nonequilibrium situation 
obtains in which the electron ionizes the ring which it 
affects first, irrespective of differences in ionization po­
tentials. 
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Table II. Ionization Potentials of Copper Chelates 
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The facility with which ligands may exchange from 
one copper to another suggests an explanation for other 
curious peaks found in many of these spectra as a set 
whose intensities are reproducible with respect to the 
intensities of other members of the set but vary with 
respect to the copper chelate spectrum. These are a 
set whose molecular ion corresponds to a mass of (M — 

63 + 56) in every case, where M represents the mass of 
the molecular ion containing 63Cu. These are proposed 
to be ions corresponding to the replacement of Cu by Fe 
in the source or inlet18 of the mass spectrometer. Our 
assignment is based on the following observations. 

(1) In several spectra examined, a peak at mje (M — 
2) with intensity relative to M, the molecular ion, equal 
to 6.7 ±0.15 % was found. In the spectrum of bis(2,4-
pentanedionato)iron(II) an (M — 2) peak of intensity 
6.7 % was also observed. The contribution of 64Fe to 
the natural isotopic abundance of iron is responsible for 
most of this; the calculated value is 6.45% for the 54Fe 
contribution. 

(2) High-resolution study of the (M — 63 + 56) peak 
in the spectrum of bis(2,4-pentanedionato)copper(II) 

(18) The walls of the source are stainless steel. The peaks were ob­
served in the instruments at both universities, though only one had been 
used to study spectra of Fe compounds. Chelation reactions incor­
porating Fe into gaseous molecules in the source have been observed in 
the spectra of porphyrins (A. H. Corwin and D. G. Whitten, private 
communications) and other chelates 03- C. Fay, private communica­
tion). 
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Table III. Effect of Repeller Voltage on Chelate Exchange 
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shows it to be indistinguishable from Fe(C 5H 7O 2^+ 

under conditions where purely organic species of low H 
content at the same nominal mass could be cleanly 
separated from the unknown ion. 

(3) Ionization potentials for the iron compounds 
resemble those of the copper chelates, but are not 
identical: that for the supposed bis(2,4-pentane-
dionato)iron(II) is 7.50 ± 0.04 eV; for bis( 1,1,1-tri-
fluoro-2,4-pentanedionato)iron(II), 8.49 ± 0.03 eV; for 
bis(l , 1,1,5,5,5- hexafluoro - 2,4 - pentanedionato)iron(II), 
9.48 ± 0.07 eV; for 2 ,4 -pen taned iona to - l ' , l ' , r , 5 ' , 5 ' , -
5'-hexafluoro-2,4-pentanedionatoiron(II), 8.70 ± 0.04 
eV. These values reflect the same magnitude of 
sensitivity to substituent effects as the copper com­
pounds, and the values are far lower than those which 
might be expected for organic compounds not con­
taining a large aromatic system. 

The intensity of this set of peaks relative to peaks in 
the copper chelate spectrum varied with source con­
ditions, particularly with repeller potential, as noted 
from Table III. This observation suggests that a large 
fraction of the replacement occurs in the source. 
Addition of a large excess of another gas (CO) did not 
significantly increase the amount of the Fe(acac)2

+ 

produced. The spectra of bis(2,2-dimethyl-3,5-hex-
anedionato)zinc(II) (7) and bis(2-methyl-3,5-hex-
anedionato)magnesium(II) (8) also are contaminated 
with the same set of peaks. On the other hand, the 
spectrum of tris(2,4-pentanedionato)chromium(III) gave 
no discernible amount of the iron chelate. Whether 
there is an electronic or steric reason for this remains to 
be established. It is interesting that the effect so far 
has been noted only in square-planar complexes,19 

though the peaks also appear in the spectra of the 
acetylacetonates of sodium and lithium in very low 
abundance. These latter spectra are ill-defined, con­
taining variable amounts of aggregates presumably 
resulting from the ionization of gaseous oligomers. 

Experimental Section 

Preparation of Compounds. The 1,3-diones were obtained from 
commercial sources or were synthesized by the method of Hauser.20 

The chelates were prepared by standard methods21 and purified by 
vacuum sublimation.22 

(19) The major fragmentation pathway of the chromium(III) chelate 
is the stepwise cleavage of the three ligands. This is in agreement with 
the earlier observation of McLafferty.4 

(20) R. Levine, J. A. Conroy, J. T. Adams, and C. R. Hauser, J. Am. 
Chem. Soc, 67, 1510 (1945). 

(21) J. T. Adams and C. R. Hauser, ibid., 66, 1220 (1944). 

Mass Spectra. The spectra were recorded with either a Perkin-
Elmer Hitachi RMU-6D double-focusing instrument at the Avery 
Laboratory or a Perkin-Elmer RMU-6E single-focusing instrument 
at the Venable Laboratory. Conditions for the former instrument 
were: ionizing voltage 80 eV, temperature of inlet 200°; those for 
the latter were: ionizing voltage 75 eV, temperature of inlet 190°. 
These instruments operate at an ionizing current of about 80 ^A. 
Essentially identical spectra were obtained with sample introduction 
by the direct-insertion probe at room temperature. Variation of the 
temperature of the source between 60 and 200° did not alter the 
relative intensities of peaks in the spectra of selected compounds. 

Electron-Impact Ionization Potentials. Extensive prior investi­
gation indicated no improvement in the standard deviation for 
replicate determinations of ionization potentials by using an elabo­
rate technique like the semilogarithmic plot method of Lossing, 
Tickner, and Bryce;23 very similar means and deviations were 
found with Kiser and Gallegos'senergy compensation technique,24 

which therefore formed the basis of our method. Several runs were 
performed for each compound, using xenon as a primary reference 
and benzene and anthracene as secondary references. Averages of 
recent literature electron-impact values for the references were taken 
as 12.12, 9.23, and 7.41 eV, respectively.25 A correlation line 
through a plot of observed values for the standards against these 
values was used to establish the individual value for each chelate 
ionization potential. Data were recorded on different days and in 
some cases with different filaments. All data were obtained with 
the RMU-6E instrument at the Venable Laboratory which was 
modified to include a digital voltmeter (United Systems Corp., 
Dayton, Ohio) readable to ±0.01 V. 
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